This is the last arithmetic book. After you finish the 192 pages of this book you will be ready for algebra. There are 33 chapters. Each chapter is a lesson. Just like in Life of Fred: Fractions, after each five chapters you will come to The Bridge, which will give you a chance to show that you know the math before you move on to the next chapter.

The main danger in the Life of Fred books is that the readers enjoy them too much. The temptation is to zoom through the chapters reading about the adventures of Fred. Here is a secret:

We continue our story of Fred where we left off at the end of Life of Fred: Fractions. As before, when I am writing I will use Times New Roman typeface. When Fred is thinking, he’ll use this typeface. And when you, my reader, voice your questions (or complaints), you will use this typeface.

Now that we have settled all of that, feel free to skip the rest of what is called the “front matter” and turn to page 13 to find out what Fred did after he opened the box that didn’t contain his bicycle.
Mary Poppins was right: A spoonful of sugar can make life a little more pleasant. It is surprising that so few arithmetic books have figured that out.

Some arithmetic books omit the sugar—which is like lemonade without any sweetener. They give you a couple of examples followed by a zillion identical problems to do. And they call that a lesson. No wonder students aren’t eager to read those books.

At the other extreme are the books that are just pure sugar—imagine a glass of lemonade with so much sugar in it that your spoon floats. The pages are filled with color and happy little pictures to show you how wonderful arithmetic is. The book comes with ① a teachers’ manual, ② a computer disc, ③ a test booklet, and ④ a box of manipulatives. And they are so busy entertaining the reader that they don’t teach a lot of math. This second approach is also usually quite expensive.

We’ll take the Goldilocks approach: not too sour and not too sweet. We will also include a lot of mathematics. (Check out the Contents on page 10.) How many arithmetic books include both forms of the Goldbach Conjecture? (See chapter 17.) The reader will be ready for algebra after completing this book.

This book covers one afternoon and evening of Fred’s life and continues the story from Life of Fred: Fractions. Every piece of math first happens in his life, and then we do the math. It is all motivated by real life. When is the last time you saw prime numbers actually used in everyday life? They are needed in this book when the cavalry is getting ready to attack what the newspaper calls the “Death Monster.”

FACTS ABOUT THE BOOK

Each chapter is a lesson. Thirty-three chapters = 33 lessons.

At the end of each chapter is a Your Turn to Play, which gives the student an opportunity to work with the material just presented. The
The answers to all of the Bridge questions are given right before the index in the back of this book.
FINAL THOUGHTS

These *Life of Fred* books are designed to teach the material. They are not merely repositories of examples and homework problems. It is so important that kids

learn
how to learn
from reading.

Once they finish college, they will face sixty years in which virtually all of their real learning** will come from *what they read*. It is not a favor to the students for you to repeat what the book said. If you do that, it is a disincentive for them to learn to benefit from their reading.

As strange as it sounds, you don’t need to teach the material. I’ve done that work for you. Relax. You can best teach by example. You read your books, while they read theirs.

The best way for you to help is to check their progress when they work on *The Bridges*.

★★ If “real learning” for adults is exemplified by what they see on television—on quiz shows or the educational channels—then the thousands of dollars and the thousands of hours they spent going to college were an utter waste.
Contents

Chapter 1 Number Systems .. 13
 decimal numbers
 base 10 system
 vigesimal (base 20) system
 1° = 60 seconds
Chapter 2 Adding Decimals .. 17
 grams
Chapter 3 Subtracting Decimals .. 19
Chapter 4 Multiplying by Ten .. 22
 centimeters
Chapter 5 Pi ... 25
 diameter and circumference
 approximately equal to (≈)
 rounding numbers

The Bridge (five tries) .. 29

Chapter 6 Multiplying Decimals .. 35
 whole numbers
Chapter 7 Functions .. 38
 inverse functions
 radius
Chapter 8 Subtracting Mixed Units 41
Chapter 9 Sets ... 45
 elements of a set
 braces
 subsets
 transitive law
 empty set
 set-builder notation
 union and intersection
 ordered pairs
 first and second coordinates
 relations
 a second definition of function
 the definition of addition using sets
Chapter 10 Rules of Divisibility ... 53
 when numbers are evenly divisible by 5, 2, and 3
Chapter 11 Dividing a Decimal by a Whole Number
- when numbers are evenly divisible by 9
- natural numbers
- conversion factors

Chapter 12 When Division Doesn’t Come Out Even
- divisor, quotient, and dividend
- changing fractions into decimals
- changing decimals into fractions

Chapter 13 When Division Never Comes Out Even
- using remainders to terminate the division
- using fractions to terminate the division
- repeating decimals and terminating decimals

Chapter 14 Dividing by a Decimal
- when to add, when to subtract, when to multiply, and when to divide
- the reason why 0.0112 $\div 16,0000$ is the same as 112.660000.
- squaring a number
- billion, trillion, quadrillion, quintillion
- exponents

Chapter 15 Bar Graphs
- vertical bar graphs
- when to use horizontal bar graphs

Chapter 16 Prime Numbers
- composite numbers
- consecutive numbers

Chapter 17 Goldbach Conjecture
- his first conjecture
- his second conjecture
- open questions in mathematics

Chapter 18 Area of a Circle

Chapter 19 Dollars vs. Cents
- .50¢ vs. 50¢

Chapter 20 Pie Charts
- what percent means
- circle graphs
- changing fractions into percents
- changing percents into fractions
- changing decimals into percents

Chapter 21 The Bridge (five tries)
Chapter 21 40% of 15 .. 108
 of often means multiply
 theorems and corollaries
Chapter 22 30% off .. 110
 computing a discount
 why we do mathematics (a small essay)
 double and triple discounts
Chapter 23 Distance = Rate × Time 113
Chapter 24 15% More 115
 the hard way to do 15% more
 the easy way to do 15% more
Chapter 25 Area of a Triangle 118
 mental arithmetic
 Heron's formula
 square root
 altitude of a triangle
The Bridge (five tries) 124
Chapter 26 Area of a Parallelogram 129
 congruent triangles
Chapter 27 13 Is What Percent of 52 134
Chapter 28 Ratio ... 138
Chapter 29 Ordered Pairs 141
 mapping and images (functions)
 a third definition of functions
Chapter 30 Graphing 145
 x-coordinate and y-coordinate
 negative numbers
 how to tell if a graph is the graph of a function
 x-axis and y-axis
The Bridge (five tries) 149
Chapter 31 Nine Conversions 154
 when long division was invented
Chapter 32 Elapsed Time 159
 how long to floss your teeth
Chapter 33 Probability 162
 events with a probability of 0%
The Final Bridge (five tries) 166
Answers to all the Bridge Problems 176
Index ... 188
What do five-and-a-half-year-old boys dream about? Many things. For Fred it was a new bicycle. When the box arrived at his office, he tore off the tape. The box fell open. Inside was . . . junk. There were gears, wires, rods, and motors, but no bicycle. He had spent every penny in his checking account ($1,935.06) and didn’t get a bike.

Fred had been cheated.

After a short trip with a blanket to a corner of his office to do a little crying, he returned to look at the pile of parts on the floor. There were bags of electrical plugs. There were springs. Fred thought, What shall I do with all this stuff? Maybe I should just throw it all in the garbage.

Then he almost stepped on a huge remote control. It had about 168 buttons on it. And then it came to him: I know! I will build a robot!

Maybe my $1,935.06 won’t be wasted after all.

Let’s look at $1,935.06 for a moment.
1,935.06

This is a decimal number. That’s because it contains a decimal point (the dot between the 5 and the 0).

When you studied the whole numbers, \{0, 1, 2, 3, 4, \ldots \}, you didn’t need any decimal points. When you count the number of buttons on a remote control, you get 168, not 168 $\frac{3}{4}$ or 168.75 or –5.

When you cut up a pie into sectors, fractions come in handy. At the dinner table you might ask, “Mom, after you cut Dad’s piece—which is one-quarter of the pie—could I please have the rest?”

Your mother, being good in mathematics, does the computation: \(1 - \frac{1}{4} = \frac{3}{4}\) and hands you three-quarters of the pie.

But there are times when decimals are more useful than fractions. For example, the bike cost Fred $1,935.06. You could write that as $1935 \frac{6}{100}$, but that looks a lot messier.

Can you imagine what a car odometer* would look like if instead of displaying:

\[
\begin{align*}
40528.0 \\
40528.1 \\
40528.2 \\
40528.3
\end{align*}
\]

it displayed fractions like:

\[
\begin{align*}
40528 \frac{1}{8} \\
40528 \frac{1}{4} \\
40528 \frac{1}{3} \\
40528 \frac{1}{2} \\
40528 \frac{9}{16}
\end{align*}
\]

* An odometer is the gauge that tells you how far you have gone.
In our number system the position of the digits makes a difference. Would you rather have $18 or $81? Both have the numerals 1 and 8, but where the 1 and 8 sit makes a big difference.*

We use the **base ten** system. When we look at a number like

\[
1,935.06
\]

the digit to the left of the decimal (the 5 in this case) is 5 ones. As we move to the left, each digit is “worth” ten times as much. As we move to the right, each digit is “worth” one-tenth as much.

\[
1,935.06 = 1 \text{ thousand} + 9 \text{ hundred} + 3 \text{ tens} + 5 \text{ ones} + 0 \text{ tenths} + 6 \text{ hundredths}.
\]

We could say that the base ten system is “handy” because—well, look for yourself:

But other base systems have been used over the years. Many ancient cultures used a base 20 system** (fingers and toes). In the vigesimal system, when you wrote 35, that meant 3 score + 5 ones. A **score** means 20. So 35 in the base 20 system is the same as 65 in the base ten system.

Traces of the vigesimal system remain in President Lincoln’s famous words, “Four score and seven years ago. . . .”

It’s time to take a little break. It’s time for **Your Turn to Play**. I’ve been having all the fun so far. It’s only fair that you get your chance.

The answers are listed right after all the questions, but please play with the questions a little bit (that is, answer them in writing) before you look at the answers.

* In fancy language, we call this a **place-value system** or, even fancier, a **positional numeration system**.

** More fancy language: vigesimal numeration system [vy JESH eh mul].
1. Write 87 in the vigesimal system.

2. Another really popular numeration system was the base 12 (duodecimal system). There are lots of places in everyday life that reflect the old base 12 system. Can you name three?

3. The oldest known place value system is the Babylonian sexagesimal system (base 60). Can you think of a couple of places in everyday life today that reflect that old system?

4. \(4 \frac{2}{3} - 2 \frac{3}{4} = ?\)

1. \(87 = 4 \text{ score} + 7 = 47\).

3. Did you ever wonder why there are sixty seconds in a minute, and sixty minutes in an hour? Now you know. In geometry we will study angles. A one-degree angle (written \(1^\circ\)) is very small. It takes 90 of them to make a right angle.

If you get out your microscope, and picture splitting a one-degree angle into 60 angles, each of those is called a minute. Sixty minutes of angle equals one degree. If you take an angle that measures one minute and split it into 60 little angles, each of those would measure one second. These are super tiny angles.

4. \(4 \frac{2}{3} - 2 \frac{3}{4} = \frac{8}{12} - 2 \frac{9}{12} = \frac{3}{12} + \frac{8}{12} - 2 \frac{9}{12} = 1 \frac{11}{12}\)
Index

\[\approx \] 26, 71
\[\in \] 46, 47
\[\cap \] 49
\[\cup \] 49
\[\subset \] 48
\[\neq \] 47
\[\emptyset \] 48
\[\cong \] 63
\#A 49, 51
\[.50 \epsilon \] 99

A Man Called Peter 162
A – B (subtraction of sets) 52
adding decimals 18
addition (definition) 51
alliteration 43
altitude of a triangle 122
ambrosia 83, 104, 109
angles in degrees and seconds 16, 63
approximately equal to 26, 71
area of a circle 95, 118
area of a parallelogram 129, 131
area of a rectangle 96, 118
area of a triangle 122
Babylonian sexagesimal system 16
bar graphs 79, 80
base ten 15
base twenty 15
belongs to \(\in \) 46, 47
big numbers 76
billion 76
braces 46
Briggs, Henry (inventor of long division) 156
\[C = \pi d \] 27
calculators banned 8

cecil Rodd’s famous advertising slogan
for Wall’s ice cream 164
centimeter 22
Cheeses from A to C 141
circle graphs 101
circumference 25, 134
composite numbers 89
congruent triangles 132
consecutive numbers 90
conversion factor 63
corollary 108
counting numbers 81
crepuscular perambulation 97
d = rt 113
decimals
adding 18
dividing 62, 65, 69, 73, 74
multiplying 36
repeating 69
subtracting 19
terminating 70
diameter 25, 134
difference between two sets 52
discount 111
double and triple 112
distance equals rate times time 113
dividend 65
divisibility 53, 60
divisor 65
double-left rule 23, 24
double-right rule 20
delayed time 159, 160
elliptical statements 115
empty set 48
epsilon 47
equals after rounding off ÷ 28
exponents 76
f(x) 103
first coordinate 51
definition 146
football at KITTENS University 94
Forty-Sixth Rule of Robotics 46
function 23, 39
definition 51, 143
graphs of a function 147, 148
image 143
mapped 143
ordered pair 143
furlong 114
gibbous moon 53
Goldbach conjecture
 first form 92
 second form 93
good teaching–five rules 142
graphing 146
Heron’s formula 120, 121
heron–the bird 120
Heron–the man 120
history–a complete summary 46
homonyms 17, 61
image 143
inclusive 103
integers 146
intersection of sets 49
inverse function 23, 39, 40, 121
liberty vs. freedom 66
Life of Bobbie 50
litotes 165
mapped 143
mea culpa 101
memorizing 157
mental arithmetic 119
metaphor 138
million 76
multiplying decimals 36
natural numbers 62, 81, 89
negative numbers 146
Newton, Isaac 42
nine conversions 155
open question in mathematics 93
ordered pair 51, 143
past tense of verbs 43
die percent (definition) 101
perimeter 121, 134
pi 27, 71
pie charts 101
place-value system 15
positional numeration system 15
presbyopia 19
prime numbers 89
Prof. Eldwood’s Algebra and Algebra
 Revisited, 11th edition 128
Prof. Eldwood’s Financing Your Teepee
 with 119
Prof. Eldwood’s Flossing for the
 Modern Man 160
Prof. Eldwood’s Guide to Modern
 Ironing 116
Prof. Eldwood’s Modern Clown Masks
 139
Prof. Eldwood’s Modern Tea Parties
 139
Prof. Eldwood’s The President Who
 Came Between 129
Index

Prof. Eldwood’s When Bad Things Happen to Good Bugs
37

Prof. Eldwood’s Why Your Work is Not Done When the Cows Mow
118

- **quadrillion**
76
- **quintillion**
76
- **quotient**
65
- **radius**
39, 95, 134
- **ratio**
139
- **five ways to write a ratio**
140
- **relation**
51
- **rhetorical questions**
138
- **right angle**
122
- **Rossetti, Christina**
124
- **rounding**
27, 28
- **rules for cutting up meat**
68
- **rules of divisibility**
53, 60
- **sea chanty**
104, 109-111, 125
- **semiperimeter**
121

set
- **definition**
46
- **difference between two sets**
52
- **element of**
46
- **empty set**
48
- **member of**
46
- **subset**
48
- **when two sets are equal**
47
- \(\emptyset\)
48
- **set-builder notation**
48
- **square root**
121, 122
- **squaring a number**
39, 76, 81, 121
- **subtracting decimals**
19
- **subtracting mixed units**
43, 44
- **Ten Commandments**
85
- **terminating decimals**
70
- “The Night Has a Thousand Eyes” by Francis William Bourdillion
154
- **theorem (definition)**
108
- **transitive property**
48
- **trick of adding zeros**
20, 65
- **trillion**
76
- “Twilight Night” by Rossetti
149
- **union of sets**
49
- **verbs**
43
- **vigesimal system**
15
- **whole numbers**
14, 35, 62
- “Why We Do Mathematics”–an essay
111
- “Winter: My Secret” by Rossetti
124
- **Wizard of Oz movie**
38
- **x-axis**
148
- **x-coordinate**
146
- **y-axis**
148
- **y-coordinate**
146
- **Young Hickory of the Granite Hills**
129