Grades, diplomas, trophies, degrees, money, pats on the head, extra time watching television, memberships in honor societies, math ribbons, valedictorian, applause, student of the week, the “I can do all the honey cards in less than 57 seconds” button, the Fields Medal, assistant professor, associate professor, full professor, finishing a three-unit course in British literature—these are all performance goals.

Mastering the multiplication tables, figuring out how to compute $\sum_{i=1}^{6} i$, understanding the differences between a formal letter and a personal letter, learning where Cypress is on a map of the Mediterranean Sea or which two countries make up the Iberian Peninsula, or how to count back change—these are all learning goals.

There is a world of difference between performance goals and learning goals.

The only way that they are alike is that they are both pleasurable.

---

* You can’t get a Nobel prize in mathematics. Alfred Nobel, who lived in the 1800s, made his fortune in explosives. He was a practical sort of fellow. In his will, he established annual prizes in five areas: Physics, Chemistry, Medicine, Literature, and Peace. One story says that Nobel didn’t think math was a practical subject—something you would ever use in everyday life.

It is an established fact that Alfred Nobel never read any of the Life of Fred series in which Fred experiences situations in his everyday life which require mathematics. Instead of Alfred Nobel prizes, there should be Fred Nobel prizes.

The Fields Medal isn’t awarded annually, but quadrennially (a word you will encounter several times in this book). It is sometimes called “the Nobel Prize of Mathematics.” On one side of the medal is a picture of Archimedes and his words: *Transire suum pectus mundoque potiri.* This is slightly weird since Archimedes didn’t speak Latin. If your knowledge of Latin is like that of Archimedes, I will translate: *Rise above yourself and grasp the world.* Mathematics does a lot of world-grasping.

** These are all covered in *Life of Fred: Ice Cream.*
Performance Goals

If you have just been hired at Harry’s Hamburgers, all day long you will flip hamburgers, and you will ask customers, “Would you like fries with that?” You put in the hours, and they offer you the rewards of salary (10¢/hour), raises (11¢/hour), and titles (Junior Associate Team Leader).

Many math curricula operate the same way. All day long you do routine problems, and you get the gold stars, a diploma, and the grade.

Learning Goals

You learn for the joy of learning. That’s why kids play with toys. They don’t do it to earn stuff. No one needs to get external encouragement to go play on the swings and slides.

WHAT DO YOU WANT FOR YOUR CHILD?

Is the whole point to get through the book? This is the classic performance goal. Does your praise revolve around how many were answered correctly or how fast the pages were turned? Do you offer a “paycheck” in the form of treats? If so, when they grow up they will be good little workers at Harry’s Hamburgers.

Or is the whole point that the book goes through them? Do you encourage discussion of the things that are being learned? Is learning where the joy is?

Kids with performance goals want easy successes. If they encounter non-routine problems, they want to cry or quit. Working hard means that they are dumb.

For kids with learning goals, exertion is positive. They don’t blame anything when they hit a problem that takes 15 minutes to figure out. It’s part of the road to mastery. You have seen it when kids are playing with little plastic blocks. They will spend hours fiddling with them.

Mathematics is not easy but neither is water skiing or backpacking. The whole point is to enjoy the difficulties and challenges—not to say that you have done it.

At the dinner table, talk about what Fred is doing, not about how many lessons were finished.
Contents

Chapter 1  Sunshine....................................................... 13
  sweet-smelling sleeping bag
  counting by fours
  remembering six times eight
  *stationary vs. stationery*
  the big question in arithmetic
  two-digit multiplication
  why a pound of hamburger weighs more than a
  pound of gold

Chapter 2  Trimmed Down Table. ................................. 19
  learning up to 30 × 30
  roosters and egg-laying
  easy way to learn 7 × 8
  a clean desktop
  sigma notation

Chapter 3  On His Desk............................................ 25
  pronouncing French words that end in *t*
  subtracting ounces from pounds
  forestland in the United States
  what five-year-olds think is funny vs. what
  twenty-five-year-olds think is funny
  what isn’t news
  hyperbole isn’t lying

Chapter 4  Mail. ...................................................... 31
  bar graphs
  letter openers for nine-month-olds
  writing formal letters
  capitalization in closing salutations
  personal letters
  elements of a set
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>An Opportunity.</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>special delivery emails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>why Stan couldn’t fly to Kansas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>elapsed time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ordered pairs, first and second coordinates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>numbers vs. numerals</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Ties &amp; Shoes.</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a$ ways to do one thing and $b$ ways to do a second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>imply $ab$ ways to do both.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>why the times sign ($\times$) is not used in algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>how to polish leather shoes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subtracting minutes from hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>A Map.</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>artists looking at a map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>war historians looking at a map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mathematicians looking at a map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lovers of cheese looking at a map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>historians of literature looking at a map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the promised land vs. Wisconsin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>easy way to remember $6 \times 9$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>agitating one’s endoplasmic reticulum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figuring out what “the land of milk and honey” might really have meant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subtracting inches from feet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Sand Castles in Cypress.</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>where Cypress is located on a map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betty’s attempt to get Fred to eat something</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87 flavors and 6 kinds of cones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the cardinality of the set of all ice cream flavors beginning with the Greek letter alpha ($\alpha$)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>The Right Machine.</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>explicit vs. implicit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iberian Peninsula</td>
<td></td>
</tr>
<tr>
<td></td>
<td>where to find an ibex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>two inches $\approx$ 5 centimeters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>selecting an ice cream maker—six questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seconds, minutes, and hours in the metric system</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 10 Ingredients. ................................................. 67
  how to find one-half of a large number
  how to get ice in the summer in Kansas in 1843
  drops, teaspoons, tablespoons, ounces, cups, quarts

Chapter 11 Seat Belts. .................................................. 73
  where not to ride if you can’t fit in the car
  graphing ordered pairs
  why you shouldn’t park on the sidewalk
  subtracting ounces from gallons

Chapter 12 PieOne. .................................................... 79
  perimeter of a building when not all the dimensions
  are given
  why math was created
  area of a rectangle
  a poor way to teach ice cream eating

Chapter 13 Before Four. .............................................. 85
  why Stanthonny thought Chico Marx was Italian
  division by two-digit numbers
  speaking ironically
  Hooke’s law
  slope of a line

Chapter 14 Starting the Machine. ................................. 91
  different scales on a graph
  given (40, 3) and (280, 21) and estimating (800, ?)
  domain and codomain
  how many digits should be in a serial number

Chapter 15 Booths at the Conference. ............................ 97
  uses for pizza buttons
  counting back change
  definition of liberty (it doesn’t mean just freedom)
  ∪ is commutative

//
Chapter 16  Fast Freeze. ........................................... 103
inequalities: < and >
how to eat pizza after eating a quart of ice cream
homogenized milk
why we use soap
cryogenics
the difference between liquid and superfluid
graph paper for those with lots of casual cash

Chapter 17  Joe and Ice Cream. ................................. 109
what protein and calcium are good for
subtracting ounces from quarts
expressing remainders as fractions
nothing physical is infinite

Chapter 18  Fred Orders a Pizza. ............................. 115
changing ounces to pounds and ounces
a pizza without calories
changing seconds into minutes and seconds

Chapter 19  Sugar. .................................................. 121
to be jealous and to covet
five gallons of Sluice each day
making estimates using graphing

Index. ................................................................. 125
Chapter One
Sunshine

Fred’s sleeping bag smelled good. Hanging it out on a tree in the Kansas air and sunshine was a good thing. Fred never knew that you were supposed to do something with a sleeping bag besides just sleep in it.

Fred owned an 85-year calendar. Since he was five years old, that calendar would last until he was 90. At that point, he imagined he would buy another calendar.

\[
\begin{align*}
85 &+ 5 \\
&= 90
\end{align*}
\]

He had owned his sleeping bag for four years. Airing out his sleeping bag every four years seemed like a great idea. He was now five years old. He would air it out when he was 9. Then we he was 13. Then 17, 21, 25, 29, 33, etc.

He wrote “air out sleeping bag” on every fourth year of his 85-year calendar. Then he wouldn’t forget.

Fred flossed his teeth every evening, so that was easy to remember. He also easily remembered, “Six times eight is 48, and that is
really great.” (One use of poetry is to help people remember things. “In fourteen ninety-two, Columbus sailed the ocean blue.”)

But when something happens only once every four years, the safest thing to do is write it down so you won’t forget it.

Fred had read a lot of books. He knew a lot about math, history, poetry, science, art, geography, vexillology (the study of flags), Shakespeare, the Bible, economics, and beekeeping. But he had never read a book about sleeping bags.

Fred Didn’t Know . . .

1. He might not fit into his three-foot sleeping bag when he turned 13.
2. If you sleep in the same sleeping bag every night for twenty or thirty years, it just might wear out.
3. Kids’ sweat and adults’ sweat are different.* Many adults air out their sleeping bags every morning rather than quadrennially (quad-DREN-knee-al-lee—once every four years).

* This is covered in more detail in Life of Fred: Pre-Algebra 1 with Biology
An 85-year calendar is hard to find in most stationery stores.*  (An understatement.) One reason is that if you sell 85-year calendars, you will probably never have repeat customers.

Another reason is that 85-year calendars are pretty thick. They might be hard to hang on the wall.

How thick? How many months would be in an 85-year calendar.** There are 12 months in a year. Do we add, subtract, multiply, or divide? That’s always the big question in arithmetic.

If you don’t know whether to add, subtract, multiply or divide, first restate the problem with really simple numbers.

Using really simple numbers—suppose there are 4 months in a year and we have a two-year calendar. Even without thinking, we know that would be 8 months. How did we get that? We multiplied.

So with an 85-year calendar and 12 months in a year, we need to multiply.

* Stationery (with an e) means writing paper and envelopes. Stationary (with an a) means not moving.
   How can you remember which is which? One way is to remember that envelopes are stationary.

** You may have also noticed that calendar is spelled calendar. English is strange. The way I remember that it is . . . I can’t remember how I remember that. I just do.
We’ve never done this before. It is multiplying by a two-digit number.

\[ 12 = 10 + 2 \]

It is multiplying by 2 and multiplying by 10.

Here’s how it’s done . . .

First, you multiply by 2.

That we have seen before.

Next, we multiply by the 1. (Since it’s really 10, and not 1, we move the answer over one space to the left.)

And then just total things up.

There are 1,020 months in an 85-year calendar.
There are 1,020 pages in an 85-year calendar.
One thousand, twenty pages!

Your Turn to Play

1. I buy my paper by the ream. One ream = 500 sheets. How many sheets would be in two reams of paper?

2. A ream of paper is about 5 cm thick. (I just measured it.) How thick would 2 reams be?

3. A ream of paper is about 2 inches thick. (I just measured it with the other side of my ruler.) How thick would 2 reams be?

More people in the world understand 5 cm than understand 2 inches.

Centimeters (cm) are part of the metric system. In the metric system (meters, liters, grams) everything is done by tens. For example, a centimeter is one-hundredth of a meter.

In the imperial system (feet, gallons, pounds) nothing is predictable.

36 inches = 3 feet = 1 yard
8 pints = 4 quarts = 1 gallon
16 ounces = 1 pound
12 troy ounces = 1 troy pound
(Phillip A. Rowland, editor)

A pound of hamburger weighs more than a pound of gold.

(Phillip A. Rowland, editor)
1. There are two ways you could have done this problem.
   By addition: 
   \[
   \begin{array}{c}
   500 \\
   + 500 \\
   \hline
   1000
   \end{array}
   \]
   By multiplication: 
   \[
   \begin{array}{c}
   500 \\
   \times 2 \\
   \hline
   1000
   \end{array}
   \]
   There are 1,000 sheets of paper in two reams.

2. By addition: 
   \[
   \begin{array}{c}
   5 \\
   + 5 \\
   \hline
   10
   \end{array}
   \]
   By multiplication: 
   \[
   \begin{array}{c}
   5 \\
   \times 2 \\
   \hline
   10
   \end{array}
   \]

3. Two reams would be four inches.

A Row of Practice. Do the whole row before you look at the answers.

\[
\begin{array}{cccc}
48 & 748 & 78 & 47 \\
+ 75 & - 9 & \times 2 & \times 13 \\
\hline
123 & 739 & 156 & 141 \\
\hline
& & & 47 \\
& & & 611
\end{array}
\]
“But, but, but . . .” she sputtered.

[It looks like we have run out of room. This is where the index of the book is supposed to start. We’ll continue, I promise, right here in the next book.]
Index

formal letters .............. 33, 34
getting ice in the summer in
    Kansas in 1843 ......... 69
graph paper ............... 108
graphing an ordered pair .... 74,
    75, 88, 93, 123
Greek alphabet ............ 60
homogenized milk ........ 106
Hooke’s Law ............... 89
hyperbole .................. 28
Iberian Peninsula .......... 62
ibex ...................... 62
ice cream eating taught poorly
                      ............... 84
imperial system ........... 17
implicit statements ....... 57
inequalities ................ 103
Joe’s stomach is not infinite
                      ............... 111
KKKKKK ................. 58, 59
liberty is not the same as freedom
                      ............... 101
literally true ............. 52
m and cm don’t require periods
                      ............... 78
maps and artists .......... 49
maps and cheese lovers ... 50
maps and historians of literature
                      ............... 51
maps and mathematicians ... 50
maps and war historians ... 50
Marx Brothers’ movie ... 86, 124
memory poem for 6 x 6 .... 21
memory poem for 6 x 7 .... 54
memory poem for 6 x 8 .... 21
memory poem for 6 x 9 .... 51
metric system ............ 17, 66
Michelangelo ............. 80
multiplying by a hundred .. 114
multiplying by a two-digit
    number .................. 16
numerals .................. 42
ordered pairs ............ 40, 74
parking on the sidewalk—why
    you shouldn't ........... 76
peninsulas ................ 62
perimeter when not all the
    dimensions are not on the
    map ................. 82-84
personal letters ........... 34, 35
Pizza Buttons ............ 97-100
plotting points ........... 93
poetry to help remember things
                      ............... 14
polishing leather shoes .... 45
promised land vs. Wisconsin
                      ............... 51
pronouncing French words that
    end in t ............... 25
quadrennially ............. 14
ream = 500 sheets ........ 17, 28
reverie .................... 55
samplers .................. 75, 76
seat belts ................. 73, 74
second coordinate ........ 40, 74
seconds, minutes, hours in the
    metric system ........... 66
sigma notation .......... 23, 24, 30, 47,
                      ............... 53
slope of a line ........... 89
Sluice-in-the-Home ...... 122, 123
special delivery emails ... 37
Index

Stanley Anthony—the story of his name . . . . . . . . 79, 80
subtracting centimeters from meters . . . . . . . . . . 77
subtracting feet from miles . . . . . . . . . . . . . 77
subtracting feet from yards . . . . . . . . . . . . . 76, 77
subtracting inches from feet and inches . . . . . . 53
subtracting minutes from hours . . . . . . . . . . . . . 48
subtracting ounces from gallons . . . . . . . . . . . . 77
subtracting ounces from pounds . . . . . . . . . . . . . 26, 35, 77
subtracting ounces from quarts . . . . . . . . . . . . . . 110
superfluid is different than liquid . . . . . . . . . . . . 107
troy ounces . . . . . . . . . . . . . . . . . . . . . . . . . . 17
why math was invented . . . . . . . . . . . . . . . . . . 82, 83
why Stan couldn't fly . . . . . . . . . . . . . . . . . . . . . . 38
why the times sign is not used in algebra . . . . . . . . . 44
why we use soap . . . . . . . . . . . . . . . . . . . . . . . . 106
x-coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
y-coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . 93